BlueBLOT-LINE Bordetella IgG REF BD-BpGL24 Tel.: +420 541 248 311 FAX: +420 541 243 390 E-mail: info@testlinecd.com www.testlinecd.cz www.testlinecd.com # **CONTENT** | 1 | Introduction | 3 | |----|--|----| | 2 | Test Principle | 4 | | 3 | Materials Provided | 5 | | 4 | Material Required for Test Performance | 6 | | 5 | Storage and Stability | 6 | | 6 | Assay Procedure | 6 | | 7 | Quality Control | 11 | | 8 | Results Interpretation | 11 | | 9 | Test Performance | 14 | | 10 | Test Limitations | 15 | | 11 | Safety Precautions | 15 | | 12 | Procedural Notes | 16 | | 13 | IFU Symbols | 17 | # BLOT-LINE kit for the detection of specific IgG antibodies to recombinant *Bordetella pertussis* and *Bordetella parapertussis* antigens in human serum or plasma #### 1 Introduction Bordetella pertussis and Bordetella parapertussis are very closely related species, producing similar virulence factors. *B. pertussis* is considered to be the main cause of pertussis (whooping cough). Before the introduction of vaccination, the disease had been one of the most serious diseases of infants and children. B. pertussis causes the severe form of the disease which lasts 6-8 weeks and has following stages: - Incubation (6 10 days) - Catarrhal (1 2 weeks) symptoms correspond to common cold symptoms. During this stage dry irritating cough becomes more severe and develops into coughing fits - Paroxysmal (2 6 weeks) typical symptom of the disease fits of violent whooping cough. Number and severity of the fits are increasing; the fits are often accompanied by vomiting. - Convalescent (1 3 weeks) characterised by decrease in frequency of fits and milder cough. *B. parapertussis* causes milder forms without severe complications. This is due to the fact that the bacteria *B. parapertussis* doesn't produce a pertussis toxin. Whooping cough does not induce lifelong immunity. Antibodies against pertussis toxin, filamentous hemagglutinin and fimbrial antigen can be detected in serum. Antibodies against toxin persist till adulthood while antibodies against hemagglutinin are slowly disappearing. Clinical picture of the disease and epidemiologic anamnesis are supplemented by laboratory tests (direct detection by cultivation or PCR, and specific antibodies determination). Serological examination is based on determination of IgA, IgG and IgM specific antibodies. IgM antibodies are detected first; they have short half-life and endure for 2-3 months. IgA antibodies can be determined after 1-2 weeks and may persist for 6-24 months depending on age. IgG antibodies are found first after 2-3 weeks after the onset of the disease and reach their maximum after 6-8 weeks. They can be detected till adulthood and may persist for several years. In children, IgA antibodies are produced more slowly – they reach detectable level 6-7 weeks after infection in infants. The detection of specific IgM antibodies is suitable for diagnosis of the acute disease in younger children while specific IgA antibodies show better diagnostic potential in older children. IgA antibodies are not produced after vaccination. Therefore presence of IgA antibodies may be a suitable marker to distinguish between natural infection and postvaccination reaction. Natural *B. pertussis* infection leads to increase of IgA antibodies whereas immunization increases mainly IgM and IgG antibodies. Serological findings should be interpreted in the context of clinical picture, vaccination and epidemiologic data, and available results of other laboratory tests. Examination should be repeated in case of ambiguous results after 2-3 weeks according to patient's clinical status. # 2 Test Principle This kit is intended to be performed on the BlueDiver Instrument (hereafter BDI). The test is based on the principle of an enzyme Immunoassay. Recombinant antigens are transferred to a nitrocellulose membrane fixed on a plastic pad. In the first reaction step, as the individual strips are incubated with the tested sample, the specific antibodies (if present in the sample) bind to the corresponding antigenic bands on the strip. After washing, the strips are further incubated with a conjugate. Visualisation is performed by incubation with a substrate solution. After colour development, the test strips are dried and evaluated. For test validity verification, the strips are equipped with a conjugate control band and with a control band indicating kit functionality and sensitivity. #### **BlueDiver Protokol** Protocol No. 6 # 3 Materials Provided | | DI ALCON | | | | |-----------------------|---|--|--|--| | BL STRIP | BL strips | | | | | | 3 x 8 units on plastic supports breakable individually; sealed in aluminium | | | | | | pouch | | | | | | 9 bands on each: | | | | | | 1 Reactive control | | | | | | 1 Conjugate control | | | | | | 7 Antigens | | | | | CART | Cartridge | | | | | | 24 units having each 7 | • | | | | | Universal solution (UN | | | | | | I st , II nd , III rd ,IV th and VI th | | | | | | | sample dilution and strip washing containing | | | | | antifoam emulsion | | | | | | Conjugate (CONJ IgG) | | | | | | V th position, 1 x 1.4 ml | | | | | | Colourless solution containing AP labelled animal immunoglobulin, stabilizer | | | | | | and antifoam emulsion | | | | | | Substrate (SUB) | | | | | | VII th position, 1 x 1.4 m | | | | | | Pale yellow solution wit | th BCIP and NBT | | | | Other material | Absorbent paper; sealed with BL strips in aluminium pouch | | | | | Documents | Instructions for Use | | | | | ST | RIP | CARTRIDGE - position of solution in a cartrige | | | | | | | | | | | | | | | | | | 7-1-1-1-1-1 | | | | | TH | 4 E | | | | | | | | | | Reactive control | 90008 | | | | | igo conjugate control | | 4, 4, 4, 4, 88 4, 4, 1 | | | | PT | _ _ | | | | | FHA " | | UNIV UNIV UNIV | | | | ACT = | _ _ | | | | | TCF | | | | | | Pertactin | | d_ = = > > 5 5 J | | | | FimN
EntA | | 11-1-1-1-1-1-1 | | | | | | | | | | | | | | | Abbreviations in alphabetic order: AP = Alkaline Phosphatase; BCIP = Bromo-Chloro-Indolyl-Phosphate; NBT = NitroBlue Tetrazolium; TBS = Tris Buffer Saline 5/20 version 1 # 4 Material Required for Test Performance BlueDiver Instrument Micropipettes Disposable tips Laboratory gloves Scanner, PC and Immunoblot Software for software evaluation # 5 Storage and Stability Store the kit at +2°C to +8°C. Do not freeze. If the kit is stored as described, the labelled expiration date is valid (the shelf life of the kit is 12 months from the date of manufacture). The opened kit should be used within three months. # Sample collection, handling and storage Blood samples can be collected in dry tubes or in tubes containing EDTA, heparin or citrate. After separation serum or plasma samples can generally be stored at 2-8°C for up to three days. Long term storage requires freezing at -20°C. Avoid repeated freezing/thawing cycles. After freezing always agitate samples before use to ensure homogeneity. Diluted samples should be used as soon as possible. The following human body liquids can be used for testing: serum, citrate plasma. Anticoagulants in the plasma (except for citrate) as well as bacterial contaminated, haemolytic or chylous samples can affect the test results. # 6 Assay Procedure #### **BASIC INFORMATION, HANDLING AND TIPS** # **TEST PROCESS (principle)** After manual loading of the strips and reagent cartridges, the incubation and washing steps of the procedure are automatically processed by the BDI which ensures an efficient circulation of fluids over the strips by continuously agitating them up and down in the wells of ready-to-use reagent cartridges. The whole test procedure is run at room temperature. # **STRIPS** (description) The reactive (front) side of the strips is coated with antigens. This front side also displays a strip number and a 2-dimensional square barcode for traceability of the strips after removal from the BDI at the end of the test. The non-reactive (back) side of the strips displays both alphanumeric and bar-coded information for identification of the strip type and lot number by the BDI. The strips must be manually inserted into the dedicated clamp before starting the automated process. During this operation avoid touching the membrane zone of the strips with fingers. Always wear laboratory gloves and use the plastic parts (strip support) for handling or manipulation. ### **REAGENT CARTRIDGES (description)** The reagent cartridges are composed of 7 different wells filled with ready-to-use reagents. The cartridges are sealed, and the reagent wells are hermetically separated. The sealing has to be removed before starting the test. Once opened, manipulate the cartridges with care in order to avoid reagent spilling and contamination from well to well. The back side of the cartridges is labelled with both alphanumeric and bar-coded information for identification of the cartridge type and lot number by the BDI. The cartridges must be manually loaded onto the dedicated cartridge holder before starting the automated process. The front and back sides of the cartridges have, respectively, a bottom triangular and two (bottom + top) square plastic edges for secure position and orientation into the holder. # **STRIPS/CARTRIDGES (associations)** The strips and cartridges of a same test kit share the same lot number and are dedicated to be associated in lot-specific pairs. Do not associate, in a same pair, a strip and a cartridge with different lot numbers as this will be detected as an invalid setting by the BDI and will stop the process. As far as each strip/cartridge pair is valid, the BDI can process strips/cartridges associations of different kits; However, only kits having the same protocol number (same incubation time and sequence) can be processed together in one same run (please refer to the protocol number indicated under the kit reference at the top of first page). #### **6.1** Test preparation Allow all kit components to equilibrate at room temperature (+18°C to +25°C) before use. A working list should always be prepared for easy loading and correct association of strips, cartridges and patient samples. Make sure that the cartridge holder is fixed in its emplacement in the BDI. Make sure that the BDI is plugged in. The following steps sequence summarizes the loading and preparation of the BDI, test strips, reagent cartridges and patient samples before starting the test: 1. Switch ON the BDI and wait a few seconds until the date and time are displayed on the touch screen. - Confirm the correct Date and Time by pressing ✓ on the touch screen (in case of first use or for reset, refer to the manual of use of the BDI) → "Initialize?" is displayed on the screen. - 3. Confirm Initialization by pressing \checkmark on the touch screen \rightarrow the horizontal arm of the instrument automatically moves forward to a central (stand-by) position \rightarrow "Load strips (24)" is displayed on the screen. - 4. Remove the clamp from its emplacement on the arm by gently pulling it upwards and load the strips to be tested: handle the clamp with numbered side facing up (open position) and insert the strips, also with numbered (reactive) side facing up, by slipping the upper plastic part (tongue) into the dedicated holes of the clamp. Apply a gentle pressure to ensure that the plastic tongue has reached the bottom end of the hole. - 5. Replace the clamp in its emplacement on the arm by gently pushing it downwards. - 6. Set the number of loaded strips using the up and down arrows on the touch screen. - 7. Confirm the number of loaded strips by pressing \checkmark on the touch screen \rightarrow the horizontal arm automatically moves backward to stand over the alignment holes of the cartridge holder \rightarrow "Check alignment" is displayed on the screen. - 8. Use the "JOG" function on the screen to check the correct alignment of the strips: maintain a gentle pressure on the down arrow on the touch screen until the bottom of the strips enters into the alignment holes of the cartridge holder. If correctly aligned, the strips will not touch the outlines of the holes. - 9. Confirm the correct alignment of the strips by pressing ✓ on the touch screen → the BDI lowers the strips completely into the alignment holes and reads the barcodes of the strips → after complete barcode reading, "Load reagent" is displayed on the touch screen. - 10.Unseal the reagent cartridges and insert them under their respective strips in the dedicated notches of the cartridge holder. - 11.Confirm complete loading by pressing ✓ on the touch screen → the BDI reads the barcodes of the cartridges and checks the correct association with the strips → after complete barcode reading, the number of strips (validated strips/cartridges associations) is displayed on the screen. - 12.Confirm the number of strips by pressing \checkmark on the touch screen \rightarrow the protocol number identified on the barcodes is displayed on the screen (Protocol ID xx). - 13.Confirm the protocol number by pressing ✓ on the touch screen → "Please close cover." is displayed on the screen. - 14.Close the cover of the BDI and confirm closing by pressing ✓ on the touch screen → the BDI proceeds to a first washing (pre-treatment) step by incubating - the strips into the 2nd well of the cartridges (processing time: 1 minute) \rightarrow At the end of the wetting step, "Please open cover." is displayed on the screen. - 15.Open the cover of the BDI and confirm opening by pressing ✓ on the touch screen → the horizontal arm automatically moves forward to the front of the instrument and swings the strips to an oblique position → "Dry strips" is displayed on the screen. - 16.Dry the strips by gently applying absorbent paper onto the basis of the bottom small cavity (sample loading hole). - 17.Confirm drying by pressing ✓ on the touch screen → "Apply samples" is displayed on the screen. - 18.Apply samples by pipetting $10 \,\mu l$ of patient serum/plasma into the bottom sample loading holes of the strips. If preferred the $10 \,\mu l$ of the serum can be directly pipetted into the Diluent Buffer ("Well I") of the cartridge. This operation can be done at any time from opening of the cartridges. - 19.Confirm samples' loading by pressing ✓ on the touch screen → "Please close cover" is displayed on the screen. - 20.Close the cover of the BDI and confirm closing by pressing ✓ on the touch screen → the BDI starts the test automatically by proceeding the steps sequence of the protocol. For detailed information or in case of any problem met at one of the preceding steps, please refer to the Manual of Use of the BDI. version 1 ### 6.2 Test processing | Step | Description (Protocol 6) | Time (min) | |------|---|------------| | 01. | The strips are incubated into the 1st well of the cartridge (Diluent Buffer). Upon contact with the liquid in the wells and agitation, the pre-loaded patients' samples are released from the small cavity at the bottom of the strips and are diluted in the buffer. | 30 | | 02. | The clamp moves forwards and the strips are incubated into the 2nd well of the cartridge (Wash Buffer). | 2 | | 03. | The clamp moves forwards and the strips are incubated into the 3rd well of the cartridge (Wash Buffer). | 2 | | 04. | The clamp moves forwards and the strips are incubated into the 6th well of the cartridge (Wash Buffer). | 2 | | 05. | The clamp moves backwards and the strips are incubated into the 5th well of the cartridge (Conjugate). | 20 | | 06. | The clamp moves backwards and the strips are incubated into the 4th well of the cartridge (Wash Buffer). | 2 | | 07. | The clamp moves backwards and the strips are incubated into the 3rd well of the cartridge (Wash Buffer). | 2 | | 08. | The clamp moves backwards and the strips are incubated into the 2nd well of the cartridge (Wash Buffer). | 2 | | 09. | The clamp moves forwards and the strips are incubated into the 7th well of the cartridge (Substrate). | 10 | | 10. | The clamp moves backwards and the strips are incubated into the 6th well of the cartridge (Wash Buffer). | 2 | After completion of the process the clamp moves to a central (stand-by) position in the BDI to allow easy manipulation of the clamp. The instrument beeps and "Finished test" is displayed on the screen. Gently apply absorbent paper onto the basis of the strips to remove liquid from the bottom small cavity (sample loading hole) and allow the strips to dry for 30 minutes before interpretation of the results. Leave the processed strips attached to the clamp. The interpretation has to be done in the 24 hours following the test processing. #### **TEST DATA REGISTRATION** The test protocol can be downloaded by pressing the USB stick symbol and following the indications on the screen (Insert USB \rightarrow Writing USB \rightarrow Remove USB). This step is not obligatory but is highly recommended for traceability and regulatory matters. # 7 Quality Control The test is valid if: - 1. The control band is present on the strips. - 2. The conjugate control band is present on the strips. # 8 Results Interpretation # 8.1 Use of Immunoblot Software and Scanning system - 1. Remove the clamp from the BDI. Leave the processed strips attached to the clamp. - 2. Insert the clamp, the reactive side of the strips facing down, into the dedicated emplacement in the cover of the BlueScan scanner. - 3. Start scanning the strips using the Immunoblot Software. # 8.2 Overview of specific antigens Highly specific antigens are described in Table 1. **Table 1 Specific antigens** | | Antigen | Description | | | |-------------------------|-----------|--|--|--| | | PT | Pertussis toxin (45 kDa) — basic virulence factor, specific only for <i>B. pertussis</i> , the most important pertussis antigen | | | | | FHA | B. pertussis filamentous hemagglutinin — adhesive protein, important immunogen; selected part of the sequence with high specificity | | | | Bordetella
pertussis | ACT | Adenylate cyclase toxin (CyaA) – significant virulence factor of <i>B. pertussis</i> with anti-phagocytic activity | | | | | TCF | Tracheal colonization factor — protein produced only by <i>B. pertussis</i> ; | | | | | | adhesin; enabling the microorganism to adhere to mucosal surfaces of respiratory tract and colonize ciliated epithelial cells and phagocytes | | | | Bordetella | Pertactin | 75 kDa; outer membrane protein of virulent <i>B. parapertussis</i> strains | | | | parapertussis | FimN | Fimbriae N – adhesin, non-produced by <i>B. pertussis</i> | | | | | EntA | Entericidin A – membrane lipoprotein | | | ### 8.3 Test evaluation Test evaluation is based on the combination of the presence of the specific antigen lines and their intensity (AU) as described in Table 2. **Table 2 Test evaluation** | Band intensity (AU) | Evaluation | Interpretation | |---------------------|---------------|----------------| | < 7.5 | No band | Negative | | 7.5 – 8.5 | Weak band | Borderline | | > 8.5 | Positive band | Positive | Final test evaluation of possible combinations is described in Table 3, Table 4. # Table 3 Final evaluation of *Bordetella pertussis* test | Specific antigen bands | Evaluation | |--|------------| | PT positive | positive | | PT borderline | | | at least one of ACT, FHA, TCF positive and at least one borderline | borderline | | all of ACT, FHA, TCF positive | | | all negative | | | only one of ACT, FHA, TCF positive | negative | | all of ACT, FHA, TCF borderline | | # Table 4 Final evaluation of *Bordetella parapertussis* test | Specific antigen bands | Evaluation | |-------------------------|------------| | at least one positive | positive | | at least one borderline | borderline | | all negative | negative | Results interpretation is described in Table 5. Table 5 Interpretation of *B. pertussis / B. parapertussis* test results | IgG | IgA | IgM | Result interpretation | | |-----|-----|-----|---|--| | + | + | + | | | | + | + | - | recent or current natural infection | | | + | - | + | state after recent vaccination (<i>B. pertussis</i>) or an early stage of infection without IgA antibodies production | | | - | + | + | | | | - | + | - | early stage of infection | | | - | - | + | | | | + | - | - | past infection or postvaccination state (B. pertussis) | | | - | - | - | in the case of a suspected infection it is recommended to test a new sample in 2-3 weeks | | Examination should be repeated in case of borderline results. Collect and test a new sample after 2 to 6 weeks according to the disease specifics. Serological finding should be interpreted in the context of the results of other laboratory tests and patient's clinical picture. #### Note BlueBLOT-LINE Bordetella IgG is calibrated according to the International Standard WHO 06/140. ### 9 Test Performance # 9.1 Reproducibility Reference control samples were tested in statistically relevant repetitions in a same run or over several runs for the calculation of intra- and inter-assay variation, respectively. In every case the intensity of the bands was within the specified range and standard deviations were less than 10%. #### 9.2 Sensitivity and Specificity Characterized samples (confirmed positive or negative for specific antibodies by reference laboratories and/or methodologies) were analysed according to the test instructions. Sensitivity and specificity were calculated from the results generated by the Immunoblot Software (see Table 6). Table 6 Parameters of BlueBLOT-LINE Bordetella IgG | | Diagnostic Sensitivity (%) | Diagnostic Specificity (%) | |---------------------------|----------------------------|----------------------------| | B. pertussis (n = 159) | 92.23 | 94.64 | | B. parapertussis (n = 40) | 99.00 | 91.30 | #### 10 Test Limitations A clinical diagnosis should not be made on the basis of a single in vitro diagnostic method. A complete clinical investigation, as well as other laboratory test results, should be considered to determine a diagnosis, since no technique used alone can rule out the possibility of false-positive or false-negative results. In any case, GLP should be applied with all general and individual regulations to the use of this kit. # 11 Safety Precautions The kit is intended for in vitro diagnostic use only. The test kit should be processed by trained technical staff only. The kit contains potentially hazardous components, thus contact with skin, eyes or mucosae has to be avoided. Patient samples must be handled with care as being a potential infection hazard. Local safety rules and regulations must be observed. #### First aid In case of contact with eyes, flush with extensive amounts of water and seek medical assistance. In case of contact with skin and clothing, remove all the contaminated clothes. Wash the skin with soap and plenty of running water. In case of contact with solutions containing plasma or clinical samples, disinfect the skin. In case of accidental ingestion, flush the mouth with drinking water and seek medical assistance. #### Remnants disposal All the materials used for performing the test must be treated as potentially infectious due to the contact with biological materials. Therefore they need to be disposed together with biological waste. #### **Expired kit disposal** Disassemble the kit and dispose the components as biological material. Discard the packaging material as required by local regulations. #### 12 Procedural Notes In order to obtain reliable results, it is necessary to have sufficient technical skills and strictly follow the Instructions for Use. Always use clean preferably disposable tips. Always start loading into position 1 of the clamp (left side) and do not leave empty spaces between the strips! After complete loading, check visually the vertical, horizontal and lateral alignment of the strips. Any obvious misalignment should be corrected by unloading the strip(s) from the clamp and loading them again. <u>Be careful</u>: any plastic bits remaining after breaking apart the individual strip holders may hinder the processing on the instrument and/or the reading with the BlueScan scanner; please remove them with scissors. In case of the following problems refer to the Manual of the BDI: - failure to read one or more cartridge barcode(s), or in case of detection of a wrong strip/cartridge association (flashing LED at the corresponding position), - misalignment (contact of the strips with the cartridge holder), - failure to read one or more strip barcode(s) (flashing LED at the unread position) Non-reproducible results might be caused by improper handling as following: - reagent exposure to excessive temperature (summer sun) or massive bacterial contamination - using reagents from different kit lots - assay performed before reagents were allowed to come to room temperature - contact of reagents with oxidants, heavy metals and their salts TestLine Clinical Diagnostics s.r.o. and its authorised distributors shall not be liable for any damages resulting from a change or modification in the procedure indicated. Notes **Notes** **Notes** # **IFU Symbols** | 2°C | Temperature limitation | |------------|------------------------------------| | | Keep dry | | | Do not expose to sunlight | | | Expiry date | | LOT | Lot number | | | Manufactured by | | Ţ <u>i</u> | Consult instructions | | REF | Catalogue number | | Σ | Number of tests | | IVD | In vitro diagnostic medical device | | | |